Background

The UltraSPARC architecture also includes special-purpose instructions to
provide support for operating systems and optimizing compilers. For exam-
ple, high-bandwidth block load and store operations can be used to speed
common operating system functions. Communication in a multi-processor
system is facilitated by special “atomic” instructions that can execute without
allowing other memory accesses to intervene. Conditional move instructions
may allow a compiler to eliminate many branch instructions in order to opti-
mize program execution.

Input and Output

In the SPARC architecture, communication with I/O devices is accomplished
through memory. A range of memory locations is logically replaced by device
registers. Each I/O device has a unique address, or set of addresses, assigned
to it. When a load or store instruction refers to this device register area of
memory, the corresponding device is activated. Thus input and output can be
performed with the regular instruction set of the computer, and no special /O
instructions are needed.

1.5.2 PowerPC Architecture

IBM first introduced the POWER architecture early in 1990 with the RS/6000.
(POWER is an acronym for Performance Optimization With Enhanced RISC.) It
was soon realized that this architecture could form the basis for a new family of
powerful and low-cost microprocessors. In October 1991, IBM, Apple, and
Motorola formed an alliance to develop and market such microprocessors, which
were named PowerPC. The first products using PowerPC chips were delivered
near the end of 1993. Recent implementations of the PowerPC architecture
include the PowerPC 601, 603, and 604; others are expected in the near future.

As its name implies, PowerPC is a RISC architecture. As we shall see, it
has much in common with other RISC systems such as SPARC. There are also
a few differences in philosophy, which we will note in the course of the dis-
cussion. This section contains an overview of the PowerPC architecture,
which will serve as background for the examples to be discussed later in the
book. Further information about PowerPC can be found in IBM (1994a) and
Tabak (1995).

Memory

Memory consists of 8-bit bytes; all addresses used are byte addresses. Two
consecutive bytes form a halfword; four bytes form a word; eight bytes form a

35

36

System Software

doubleword; sixteen bytes form a quadword. Many instructions may execute
more efficiently if operands are aligned at a starting address that is a multlple
of their length.

PowerPC programs can be written using a virtual address space of 2¢*
bytes. This address space is divided into fixed-length segments, which are
256 megabytes long. Each segment is divided into pages, which are 4096
bytes long. Some of the pages used by a program may be in physical mem-
ory, while others may be stored on disk. When an instruction is executed,
the hardware and the operating system make sure that the needed page is
loaded into physical memory. The virtual address specified by the instruc-
tion is automatically translated into a physical address. Chapter 6 contains a
brief discussion of methods that can be used in this kind of address
translation. - ‘

Registers

There are 32 general-purpose registers, designated GPRO through GPR31. In
the full PowerPC architecture, each register is 64 bits long. PowerPC can also
be implemented in a 32-bit subset, which uses 32-bit registers. The general-
purpose registers can be used to store and manipulate 1nteger data and
addresses.

Floating-point computations are performed using a special floating-point
unit (FPU). This unit contains thirty-two 64-bit floating-point registers, and a
status and control register.

A 32-bit condition register reflects the result of certain operatlon:. and can
be used as a mechanism for testing and branching. This register is divided into
eight 4-bit subfields, named CRO through CR7. These subfields can be set and
tested individually by PowerPC instructions.

The PowerPC architecture includes a Link Register (LR) and a Count
Register (CR), which are used by some branch instructions. There is also a
Machine Status Register (MSR) and variety of other control and status regis-
ters, some of which are implementation dependent.

Data Formats

The PowerPC architecture provides for the storage of integers, floating-point
values, and characters. Integers are stored as 8-, 16-, 32-, or 64-bit binary num-
bers. Both signed and unsigned integers are supported; 2's complement is used
for negative values. By default, the most significant part of a numeric value is
stored at the lowest-numbered address (big-endian byte ordering). It is possible
to select little-endian byte ordering by setting a bit in a control register.

Background

There are two different floating-point data formats. The single-precision
format is 32 bits long. It stores 23 significant bits of the floating-point value,
and allows for an 8-bit exponent (power of 2). (The remaining bit is used to
store the sign of the floating-point value.) The double-precision format is
64 bits long. It stores 52 significant bits, and allows for a 11-bit exponent.

Characters are stored one per byte, using their 8-bit ASCII codes.

Instruction Formats

There are seven basic instruction formats in the PowerPC architecture, some of
which have subforms. All of these formats are 32 bits long. Instructions must
be aligned beginning at a word boundary (i.e., a byte address that is a multiple
of 4). The first 6 bits of the instruction word always specify the opcode; some
instruction formats also have an additional “extended opcode” field.

The fixed instruction length in the PowerPC architecture is typical of RISC
systems. The variety and complexity of instruction formats is greater than that
found on most RISC svstems (such as SPARC). However, the fixed length
makes instruction decoding faster and simpler than on CISC systems like VAX
and x86.

» Addressing Modes

As in most architectures, an operand value may be specified as part of the
instruction itself (immediate mode), or it may be in a register (register direct
mode). The only instructions that address memory are load and store opera-
tions, and branch instructions.

Load and store operations use one of the following three addressing
modes:

Mode Target address calculation

Register indirect TA = (register)
Register indirect with index =~ TA = (register-1) + (register-2)

Register indirect with TA = (register) + displacement
immediate index {16 bits, signed}

The register numbers and displacement are encoded as part of the instruction.

37

System Software

Branch instructions use one of the following three addressing modes:

Mode Target address calculation

Absolute TA = actual address

Relative TA = current instruction address +
displacement {25 bits, signed}

Link Register TA = (LR)

Count Register TA = (CR)

The absolute address or displacement is encoded as part of the instruction.

Instruction Set

The PowerPC architecture has approximately 200 machine instructions, Some
instructions are more complex than those found in most RISC systems. For
example, load and store instructions may automatically update the index regis-
ter to contain the just-computed target address. There are floating-point “multi-
ply and add” instructions that take three input operands and perform a
multiplication and an addition in one instruction. Such instructions reflect the
PowerPC approach of using more powerful instructions, so fewer instructions
are required to perform a task. This is in contrast to the more usual RISC
approach, which keeps instructions simple so they can be executed as fast as
possible. ¢

In spite of this difference in philosophy, PowerPC is generally considered
to be a true RISC architecture. Further discussions of these issues can be found
in Smith and Weiss (1994).

Instruction execution on a PowerPC system is pipelined, as we discussed
for SPARC. However, the pipelining is more sophisticated than on the original
SPARC systems, with branch prediction used to speed execution. As a result,
the delayed branch technique we described for SPARC is not used on
PowerPC (and most other modern architectures). Further discussion of
pipelining and branch prediction can be found in Tabak (1995).

Input and Output

The PowerPC architecture provides two different methods for performing 1/0
operations. In one approach, segments in the virtual address space are
mapped onto an external address space (typically an I/O bus). Segments that

Background

are mapped in this way are called direct-store segments. This method is similar
to the approach used in the SPARC architecture.

A reference to an address that is not in a direct-store segment represents a
normal virtual memory access. In this situation, I/O is performed using the
regular virtual memory management hardware and software.

1.5.3 Cray T3E Architecture

The T3E series of supercomputers was announced by Cray Research, Inc., near
the end of 1995. The T3E is a massively parallel processing (MPP) system,
designed for use on technical applications in scientific computing. The earlier
Cray T3D system had a similar (but not identical) architecture.

A T3E system contains a large number of processing elements (PE),
arranged in a three-dimensional network as illustrated in Fig. 1.8. This network
provides a path for transferring data between processors. It also implements
control functions that are used to synchronize the operation of the PEs used by
a program. The interconnect network is circular in each dimension. Thus PEs at
“opposite” ends of the three-dimensional array are adjacent with respect to the
network. This is illustrated by the dashed lines in Fig. 1.8; for simplicity, most
of these “circular” connections have been omitted from the drawing.

Each PE consists of a DEC Alpha EV5 RISC microprocessor (currently
model 21164), local memory, and performance-accelerating control logic devel-
oped by Cray. A T3E system may contain from 16 to 2048 processing elements.

This section contains an overview of the architecture of the T3E and the
DEC Alpha microprocessor. Section 3.5.3 discuss some of the ways programs
can take advantage of the multiprocessor architecture of this machine. Further
information about the T3E can be found in Cray Research (1995c). Further
information about the DEC Alpha architecture can be found in Sites (1992) and
Tabak (1995).

N »— |nterconnect network
N\

Figure 1.8 Overall T3E architecture.

39

40

System Software

Memory

Each processing element in the T3E has its own local memory with a capacity
of from 64 megabytes to 2 gigabytes. The local memory within each PE is part
of a physically distributed, logically shared memory system. System memory
is physically distributed because each PE contains local memory. System
memory is logically shared because the microprocessor in one PE can access
the memory of another PE without involving the microprocessor in that PE.

The memory within each processing element consists of 8-bit bytes; all
addresses used are byte addresses. Two consecutive bytes form a word; four
bytes form a longword; eight bytes form a quadword. Many Alpha instructions
may execute more efficiently if operands are aligned at a starting address that
is a multiple of their length. The Alpha architecture supports 64-bit virtual
addresses. '

Registers

The Alpha architecture includes 32 general-purpose registers, designated RO
through R31; R31 always contains the value zero. Each general-purpose regis-
ter is 64 bits long. These general-purpose registers can be used to store and
manipulate integer data and addresses.

There are also 32 floating-point registers, designated FO through F31; F31
always contains the value zero. Each floating-point register is 64 bits long.

In addition to the general-purpose and floating-point registers, there is a
64-bit program counter PC and several other status and control registers.

Data Formats

The Alpha architecture provides for the storage of integers, floating-point val-
ues, and characters. Integers are stored as longwords or quadwords; 2's com-
plement is used for negative values. When interpreted as an integer, the bits of
a longword or quadword have steadily increasing significance beginning with
bit 0 (which is stored in the lowest-addressed byte).

There are two different types of floating-point data formats in the Alpha
architecture. One group of three formats is included for compatibility with the
VAX architecture. The other group consists of four IEEE standard formats,
which are compatible with those used on most modern systems.

Characters may be stored one per byte, using their 8-bit ASCII codes.
However, there are no byte load or store operations in the Alpha architecture;
only longwords and quadwords can be transferred between a register and
memory. As a consequence, characters that are to be manipulated separately
are usually stored one per longword. ‘

Background

Instruction Formats

There are five basic instruction formats in the Alpha architecture, some of
which have subforms. All of these formats are 32 bits long. (As we have noted
before, this fixed length is typical of RISC systems.) The first 6 bits of the
instruction word always specify the opcode; some instruction formats also
have an additional “function” field.

Addressing Modes

As in most architectures, an operand value may be specified as part of the
instruction itself (immediate mode), or it may be in a register (register direct
mode). As in most RISC systems, the only instructions that address memory
are load and store operations, and branch instructions.

Operands in memory are addressed using one of the following two modes:

Mode 7 Target address calculation
PC-relative TA = (PC) + displacement {23 bits, signed}
Register indirect TA = (register) + displacement

with displacement {16 bits, signed])

Register indirect with displacement mode is used for load and store opera-
tions and for subroutine jumps. PC-relative mode is used for conditional and
unconditional branches.

Instruction Set

The Alpha architecture has approximately 130 machine instructions, reflecting
its RISC orientation. The instruction set is designed so that an implementation
of the architecture can be as fast as possible. For example, there are no byte or
word load and store instructions. This means that the memory access interface
does not need to include shift-and-mask operations. Further discussion of this
approach can be found in Smith and Weiss (1994).

Input and Output
The T3E system performs I/O through multiple ports into one or more I/0O

channels, which can be configured in a number of ways. These channels are
integrated into the network that interconnects the processing nodes. A system

4

System Software

may be configured with up to one I/O channel for every eight PEs. All
channels are accessible and controllable from all PEs.

Further information about this “scalable” I/O architecture can be found in
Cray Research (1995c).

EXERCISES
Section 1.3

1. Write a sequence of instructions for SIC to set ALPHA equal to the
product of BETA and GAMMA. Assume that ALPHA, BETA, and
GAMMA are defined as in Fig. 1.3(a).

2. Write a sequence of instructions for SIC/XE to set ALPHA equal to
4 * BETA - 9. Assume that ALPHA and BETA are defined as in
Fig. 1.3(b). Use immediate addressing for the constants.

3. Write SIC instructions to swap the values of ALPHA and BETA.

4. Write a sequence of instructions for SIC to set ALPHA equal to the
integer portion of BETA + GAMMA. Assume that ALPHA and BETA
are defined as in Fig. 1.3(a).

5. Write a sequence of instructions for SIC/XE to divide BETA by
GAMMA, setting ALPHA to the integer portion of the quotient and
DELTA to the remainder. Use register-to-register instructions to make
the calculation as efficient as possible.

6. Write a sequence of instructions for SIC/XE to divide BETA by
GAMMA, setting ALPHA to the value of the quotient, rounded to
the nearest integer. Use register-to-register instructions to make the
calculation as efficient as possible.

7. Write a sequence of instructions for SIC to clear a 20-byte string to all
blanks.

8. Write a sequence of instructions for SIC/XE to clear a 20-byte string
to all blanks. Use immediate addressing and register-to-register
instructions to make the process as efficient as possible.

9. Suppose that ALPHA is an array of 100 words, as defined in Fig. 1.5(a).
Write a sequence of instructions for SIC to set all 100 elements of the
array to 0.

10. Suppose that ALPHA is an array of 100 words, as defined in F1g
1.5(b). Write a sequence of instructions for SIC/XE to set all 100
elements of the array to 0. Use immediate addressing and register-to-
register instructions to make the process as efficient as possible.

11.

12.

13.

14.

15.

16.

17.

Background

Suppose that ALPHA is an array of 100 words. Write a sequence of
instruction for SIC/XE to arrange the 100 words in ascending order
and store result in an array BETA of 100 words.

Suppose that ALPHA and BETA are the two arrays of 100 words.
Another array of GAMMA elements are obtained by multiplying the
corresponding ALPHA element by 4 and adding the corresponding
BETA elements.

Suppose that ALPHA is an array of 100 words. Write a sequence of
instructions for SIC/XE to find the maximum element in the array
and store results in MAX.

Suppose that RECORD contains a 100-byte record, as in Fig. 1.7(a).
Write a subroutine for SIC that will write this record onto device 05.

Suppose that RECORD contains a 100-byte record, as in Fig. 1.7(b).
Write a subroutine for SIC/XE that will write this record onto device
05. Use immediate addressing and register-to-register instructions to
make the subroutine as efficient as possible.

Write a subroutine for SIC that will read a record into a buffer, as in
Fig. 1.7(a). The record may be any length from 1 to 100 bytes.
The end of the record is marked with a “null” character (ASCII code
00). The subroutine should place the length of the record read into a
variable named LENGTH.

Write a subroutine for SIC/XE that will read a record into a buffer, as
in Fig. 1.7(b). The record may be any length from 1 to 100 bytes. The
end of the record is marked with a “null” character (ASCII code 00).
The subroutine should place the length of the record read into a
variable named LENGTH. Use immediate addressing and register-
to-register instructions to make the subroutine as efficient as possible.

43

Chapter 2

Assemblers

In this chapter we discuss the design and implementation of assemblers. There
are certain fundamental functions that any assembler must perform, such as
translating mnemonic operation codes to their machine language equivalents
and assigning machine addresses to symbolic labels used by the programmer.
If we consider only these fundamental functions, most assemblers are very
much alike.

Beyond this most basic level, however, the features and design of an
assembler depend heavily upon the source language it translates and the
machine language it produces. One aspect of this dependence is, of course, the
existence of different machine instruction formats and codes to accomplish
(for example) an ADD operation. As we shall see, there are also many subtler
ways that assemblers depend upon machine architecture. On the other hand,
there are some features of an assembler language (and the corresponding
assembler) that have no direct relation to machine architecture—they are, in a
sense, arbitrary decisions made by the designers of the language.

We begin by considering the design of a basic assembler for the standard
version of our Simplified Instructional Computer (SIC). Section 2.1 introduces
the most fundamental operations performed by a typical assembler, and
describes common ways of accomplishing these functions. The algorithms and
data structures that we describe are shared by almost all assemblers. Thus this
level of presentation gives us a starting point from which to approach the
study of more advanced assembler features. We can also use this basic struc-
ture as a framework from which to begin the design of an assembler for a com-
pletely new or unfamiliar machine.

In Section 2.2, we examine some typical extensions to the basic assembler
structure that might be dictated by hardware considerations. We do this by
discussing an assembler for the SIC/XE machine. Although this SIC/XE
assembler certainly does not include all possible hardware-dependent fea-
tures, it does contain some of the ones most commonly found in real
machines. The principles and techniques should be easily applicable to other
computers.

Section 2.3 presents a discussion of some of the most commonly encountered
machine-independent assembler language features and their implementation.

45

46

System Software

Once again, our purpose is not to cover all possible options, but rather to
introduce concepts and techniques that can be used in new and unfamiliar
situations. :

Section 2.4 examines some important alternative design schemes for an
assembler. These are features of an assembler that are not reflected in the
assembler language. For example, some assemblers process a source program
in one pass instead of two; other assemblers may make more than two passes.
We are concerned with the implementation of such assemblers, and also with
the environments in which each might be useful. :

Finally, in Section 2.5 we briefly consider some examples of actual assem-
blers for real machines. We do not attempt to discuss all aspects of these
assemblers in detail. Instead, we focus on the most interesting features that are
introduced by hardware or software design decisions.

2.1 BASIC ASSEMBLER FUNCTIONS

Figure 2.1 shows an assembler language program for the basic version of SIC.
We use variations of this program throughout this chapter to show different
assembler features. The line numbers are for reference only and are not part of
the program. These numbers also help to relate corresponding parts of differ-
ent versions of the program. The mnemonic instructions used are those intro-
duced in Section 1.3.1 and Appendix A. Indexed addressing is indicated by
adding the modifier “,X” following the operand (see line 160). Lines beginning
with “.” contain comments only.

In addition to the mnemonic machine instructions, we have used the fol-
lowing assembler directives:

START Specify name and starting address for the program.

END Indicate the end of the source program and (optionally) specify
the first executable instruction in the program.

BYTE Generate character or hexadecimal constant, occupying as
many bytes as needed to represent the constant.

WORD Generate one-word integer constant.

RESB Reserve the indicated number of bytes for a data area.

RESW Reserve the indicated number of words for a data area.

The program contains a main routine that reads records from an input

device (identified with device code F1) and copies them to an output device
(code 05). This main routine calls subroutine RDREC to read a record into a

Line

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
. 110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255

Source statement

COPY START
FIRST STL
CLOOP JSUB
LDA
COMP
JEQ
JSUB
J
ENDFIL LDA
STA
LDA
STA
JSUB
LDL
RSUB
EOF BYTE
THREE WORD
ZERO WORD
RETADR RESW
LENGTH RESW
BUFFER RESB

1000
RETADR
RDREC
LENGTH
ZERO
ENDFIL
WRREC
CLOOP
EOF
BUFFER
THREE
LENGTH
WRREC
RETADR

C'EOF’
3
0
1
1
4

096

Assemiblers

COPY FILE FROM INPUT TO OUTPUT
SAVE RETURN ADDRESS

READ INPUT RECORD

TEST FOR EOF (LENGTH = 0)

EXIT IF EOF FOUND

WRITE OUTPUT RECORD

LOOP

INSERT END OF FILE MARKER

SET LENGTH = 3
WRITE EOF

GET RETURN ADDRESS
RETURN TO CALLER

LENGTH OF RECORD
4096-BYTE BUFFER AREA

SUBROUTINE TO READ RECORD INTO BUFFER

RDREC LDX
LDA
RLOOP D
JEQ
RD
COMP
JEQ
STCH
TIX
JLT
EXIT STX
RSUB
INPUT BYTE
MAXLEN WORD

SUBROUTINE TO WRITE

WRREC LDX

WLOOP D
JEQ
LDCH
WD
TIX
JLT
RSUB

OUTPUT BYTE
END

ZERO
ZERO
INPUT
RLOOP
INPUT
ZERO
EXIT
BUFFER, X
MAXLEN
RLOOP
LENGTH

X'Fl’
4096

ZERO
OUTPUT
WLOOP
BUFFER, X
OUTPUT
LENGTH
WLOOP

X'05’
“FIRST

CLEAR LOOP COUNTER
CLEAR A TO ZERO
TEST INPUT DEVICE
LOOP UNTIL READY
READ CHARACTER INTO REGISTER A
TEST FOR END OF RECORD (X’00')
EXIT LOOP IF EOR
STORE CHARACTER IN BUFFER
LOOP UNLESS MAX LENGTH
HAS BEEN REACHED
SAVE RECORD LENGTH
RETURN TO CALLER
CODE FOR INPUT DEVICE

RECORD FROM BUFFER

CLEAR LOOP COUNTER

TEST OUTPUT DEVICE

LOOP UNTIL READY

GET CHARACTER FROM BUFFER

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

RETURN TO CALLER

CODE FOR OUTPUT DEVICE

Figure 2.1 Example of a SIC assembler language program.

47

48

System Software

buffer and subroutine WRREC to write the record from the buffer to the out-
put device. Each subroutine must transfer the record one character at a time
because the only I/O instructions available are RD and WD. The buffer is nec-
essary because the I/O rates for the two devices, such as a disk and a slow
printing terminal, may be very different. (In Chapter 6, we see how to use
channel programs and operating system calls on a SIC/XE system to accom-
plish the same functions.) The end of each record is marked with a null charac-
ter (hexadecimal 00). If a record is longer than the length of the buffer (4096
bytes), only the first 4096 bytes are copied. (For simplicity, the program does
not deal with error recovery when a record containing 4096 bytes or more is
read.) The end of the file to be copied is indicated by a zero-length record.
When the end of file is detected, the program writes EOF on the output device
and terminates by executing an RSUB instruction. We assume that this pro-
gram was called by the operating system using a JSUB instruction; thus, the
RSUB will return control to the operating system.

2.1.1 A Simple SIC Assembler

Figure 2.2 shows the same program as in Fig. 2.1, with the generated object code
for each statement. The column headed Loc gives the machine address (in hexa-
decimal) for each part of the assembled program. We have assumed that the
program starts at address 1000. (In an actual assembler listing, of course, the
comments would be retained; they have been eliminated here to save space.)

The translation of source program to object code requires us to accomplish
the following functions (not necessarily in the order given):

1. Convert mnemonic operation codes to their machine language
equivalents—e.g., translate STL to 14 (line 10).

2. Convert symbolic operands to their equivalent machine addresses—
e.g., translate RETADR to 1033 (line 10).

3. Build the machine instructions in the proper format.

4. Convert the data constants specified in the source program into their
internal machine representations—e.g., translate EOF to 454F46
(line 80).

5. Write the object program and the assembly listing.

All of these functions except number 2 can easily be accomplished by sequen-
tial processing of the source program, one line at a time. The translation of
addresses, however, presents a problem. Consider the statement

10 1000 FIRST STL RETADR 141033

Assemblers

Line Loc Source statement Object code
5 1000 COPY START 1000 ‘
10 1000 FIRST STL RETADR 141033
15 1003 CLOOP JSUB RDREC 482039
20 1006 LDA LENGTH 001036
25 1009 coMp ZERO 281030
30 100C JEQ ENDFIL 301015
35 100F JSUB WRREC 482061
40 1012 J CLOOP 3C1003
45 1015 ENDFIL LDA EOF 00102a
50 1018 STA BUFFER 0C1039
55 101B LDA THREE 00102D N
60 101E STA LENGTH 0C1036 Jr“
65 1021 JSUB WRREC 482061
70 1024 LDL RETADR 081033 '
75 1027 RSUB 4C0000
80 102 EOF BYTE C'EOF 454F46
85 102D THREE WORD 3 000003
90 1030 ZERO WORD 0 000000
95 1033 RETADR RESW 1
100 1036 LENGTH RESW 1
105 1039 BUFFER RESB 4096
110 .
115 . SUBROUTINE TO READ RECORD INTO BUFFER
120 .
125 2039 RDREC LDX ZERO 041030 -
130 203C LDA ZERO 001030
135 203F RLOOP D INPUT E0205D 5, o199
140 2042 JEQ RLOOP 30203F
145 2045 RD INPUT D8205D
150 2048 comp ZERO 281030
155 2048 JEQ EXIT 302057,
160 204E STCH BUFFER, X 549039
165 2051 TIX MAXLEN 2C205E
170 2054 JLT RLOOP 38203F
175 2057 EXIT STX LENGTH 101036
180 205a RSUB 4C0000
185 205D INPUT BYTE X'F1° F1
190 205E MAXLEN WORD 4096 001000
195 .
200 . SUBROUTINE TO WRITE RECORD FROM BUFFER
205 .
210 2061 WRREC LDX ZERO 041030
215 2064 WLOOP ™D OUTPUT E02079
220 2067 JEQ WLOOP 302064
225 206A LDCH BUFFER, X 509039
230 206D WD OUTPUT DC2079
235 2070 TIX LENGTH 2C1036
240 2073 JLT WLOOP 382064
245 2076 RSUB 4C0000
250 2079 OUTPUT BYTE X'05" 05
255 END FIRST

Figure 2.2 Program from Fig. 2.1 with object code.

System Software

This instruction contains a forward reference—that is, a reference to a label
(RETADR) that is defined later in the program. If we attempt to translate the
program line by line, we will be unable to process this statement because we
do not know the address that will be assigned to RETADR. Because of this,
most assemblers make two passes over the source program. The first pass
does little more than scan the source program for label definitions and assign
addresses (such as those in the Loc column in Fig. 2.2). The second pass per-
forms most of the actual translation previously described.

In addition to translating the instructions of the source program, the assem-
bler must process statements called assembler directives (or pseudo-instructions).
These statements are not translated into machine instructions (although they
may have an effect on the object program). Instead, they provide instructions
to the assembler itself. Examples of assembler directives are statements like
BYTE and WORD, which direct the assembler to generate constants as part of
the object program, and RESB and RESW, which instruct the assembler to
reserve memory locations without generating data values. The other assem-
bler directives in our sample program are START, which specifies the starting
memory address for the object program, and END, which marks the end of the
program.

Finally, the assembler must write the generated object code onto some out-
put device. This object program will later be loaded into memory for execution.
The simple object program format we use contains three types of records:
Header, Text, and End. The Header record contains the program name, start-
ing address, and length. Text records contain the translated (i.e., machine
code) instructions and data of the program, together with an indication of
the addresses where these are to be loaded. The End record marks the end of
the object program and specifies the address in the program where execution
is to begin. (This is taken from the operand of the program’s END statement.
If no operand is specified, the address of the first executable instruction is
used.)

The formats we use for these records are as follows. The details of the for-
mats (column numbers, etc.) are arbitrary; however, the information contained
in these records must be present (in some form) in the object program.

Header record:
Col. 1 H
Col. 2-7 Program name
Col. 8-13 Starting address of object program (hexadecimal)

Col. 14-19 Length of object program in bytes (hexadecimal)

Assemblers

Text record:
Col.1 T
Col. 2-7 Starting address for object code in this record (hexadecimal)
Col. 8-9 Length of object code in this record in bytes (hexadecimal)
Col. 10-69 Object code, represented in hexadecimal (2 columns per

byte of object code)
End record:
Col. 1 E
Col. 2-7 Address of first executable instruction in object program
(hexadecimal)

To avoid confusion, we have used the term column rather than byte to refer to
positions within object program records. This is not meant to imply the use of
any particular medium for the object program.

Figure 2.3 shows the object program corresponding to Fig. 2.2, using this
format. In this figure, and in the other object programs we display, the symbol A
is used to separate fields visually. Of course, such symbols are not present in
the actual object program. Note that there is no object code corresponding to
addresses 1033-2038. This storage is simply reserved by the loader for use by
the program during execution. (Chapter 3 contains a detailed discussion of the
operation of the loader.)

We can now give a general description of the functions of the two passes of
our simple assembler.

Pass 1 (define symbols):
1. Assign addresses to all statements in the program.

2. Save the values (addresses) assigned to all labels for use in Pass 2.

EQOPY P0100q90107A

TAOOIOOOAIEAl41033A482039A001036A281030/\301015/\48206 1A3Cl003A00102AA001039A00102D
TAOOIOIEAI 5/\0C1036A48206 1A08l033A4C0000A454F46A000003A000000
TA002039A1EA010l030/\00l030AE0205DA30203!-;\082050/\281030/\302057A549039A20205EA38203F
002057/\1(:/\101036A4C0009\F1/\001000/\041030AEOZO79A302064/\509039/\DCZO79/\2C1036
TA00207.'3,\07/\382064/\1000000/\05

E/\OOIOO,O’

=3

Figure 2.3 Object program corresponding to Fig. 2.2.

System Software

3. Perform some processing of assembler directives. (This includes
processing that affects address assignment, such as determining
the length of data areas defined by BYTE, RESW, etc.)

Pass 2 (assemble instructions and generate object program):

1. Assemble instructions (translating operation codes and looking
up addresses).

2. Generate data values defined by BYTE, WORD, etc.
3. Perform processing of assembler directives not done during Pass 1.

4. Write the object program and the assembly listing.

In the next section we discuss these functions in more detail, describe the
internal tables required by the assembler, and give an overall description of
the logic flow of each pass.

2.1.2 Assembler Algorithm and Data Structures

Our simple assembler uses two major internal data structures: the Operation
Code Table (OPTAB) and the Symbol Table (SYMTAB). OPTAB is used to look
up mnemonic operation codes and translate them to their machine language
equivalents. SYMTAB is used to store values (addresses) assigned to labels.

We also need a Location Counter LOCCTR. This is a variable that is used to
help in the assignment of addresses. LOCCTR is initialized to the beginning
address specified in the START statement. After each source statement is
processed, the length of the assembled instruction or data area to be generated
is added to LOCCTR. Thus whenever we reach a label in the source program,
the current value of LOCCTR gives the address to be associated with that label.

The Operation Code Table must contain (at least) the mnemonic operation
code and its machine language equivalent. In more complex assemblers, this
table also contains information about instruction format and length. During
Pass 1, OPTAB is used to look up and validate operation codes in the source
program. In Pass 2, it is used to translate the operation codes to machine lan-
guage. Actually, in our simple SIC assembler, both of these processes could be
done together in either Pass 1 or Pass 2. However, for a machine (such as
SIC/XE) that has instructions of different lengths, we must search OPTAB in
the first pass to find the instruction length for incrementing LOCCTR.
Likewise, we must have the information from OPTAB in Pass 2 to tell us
which instruction format to use in assembling the instruction, and any pecu-
liarities of the object code instruction. We have chosen to retain this structure
in the current discussion because it is typical of most real assemblers.

Assemblers

OPTAB is usually organized as a hash table, with mnemonic operation code
as the key. (The information in OPTAB is, of course, predefined when the
assembler itself is written, rather than being loaded into the table at execution
time.) The hash table organization is particularly appropriate, since it provides
fast retrieval with a minimum of searching. In most cases, OPTAB is a static
table—that is, entries are not normally added to or deleted from it. In such
cases it is possible to design a special hashing function or other data structure
to give optimum performance for the particular set of keys being stored. Most
of the time, however, a general-purpose hashing method is used. Further infor-
mation about the design and construction of hash tables may be found in any
good data structures text, such as Lewis and Denenberg (1991) or Knuth (1973).

The symbol table (SYMTAB) includes the name and value (address) for
each label in the source program, together with flags to indicate error condi-
tions'(e.g., a symbol defined in two different places). This table may also con-
tain other information about the data area or instruction labeled—for example,
its type or length. During Pass 1 of the assembler, labels are entered into
SYMTARB as they are encountered in the source program, along with their
assigned addresses (from LOCCTR). During Pass 2, symbols used as operands
are looked up in SYMTARB to obtain the addresses to be inserted in the assem-
bled instructions.

SYMTAB is usually organized as a hash table for efficiency of insertion and
retrieval. Since entries are rarely (if ever) deleted from this table, efficiency of
deletion is not an important consideration. Because SYMTAB is used heavily
throughout the assembly, care should be taken in the selection of a hashing
function. Programmers often select many labels that have similar characteris-
tics—for example, labels that start or end with the same characters (like
LOOP1, LOOP2, LOOPA) or are of the same length (like A, X, Y, Z). It is
important that the hashing function used perform well with such non-random
keys. Division of the entire key by a prime table length often gives good
results.

It is possible for both passes of the assembler to read the original source
program as input. However, there is certain information (such as location
counter values and error flags for statements) that can or should be communi-
cated between the two passes. For this reason, Pass 1 usually writes an inter-
mediate file that contains each source statement together with its assigned
address, error indicators, etc. This file is used as the input to Pass 2. This work-
ing copy of the source program can also be used to retain the results of certain
operations that may be performed during Pass 1 (such. as scanning the
operand field for symbols and addressing flags), so these need not be per-
formed again during Pass 2. Similarly, pointers into OPTAB and SYMTAB may
be retained for each operation code and symbol used. This avoids the need to
repeat many of the table-searching operations.

53

System Software

Figures 2.4(a) and (b) show the logic flow of the two passes of our assem-
bler. Although described for the simple assembler we are discussing, this is
also the underlying logic for more complex two-pass assemblers that we con-
sider later. We assume for simplicity that the source lines are written in a fixed
format with fields LABEL, OPCODE, and OPERAND. If one of these fields
contains a character string that represents a number, we denote its numeric
value with the prefix # (for example, # OPERAND)]).

At this stage, it is very important for you to understand thoroughly the
algorithms in Fig. 2.4. You are strongly urged to follow through the logic in
these algorithms, applying them by hand to the program in Fig. 2.1 to produce
the object program of Fig. 2.3.

Much of the detail of the assembler logic has, of course, been left out to
emphasize the overall structure and main concepts. You should think about
these details for yourself, and you should also attempt to identify those func-
tions of the assembler that should be implemented as separate procedures or
modules. (For example, the operations “search symbol table” and “read input
line” might be good candidates for such implementation.) This kind of
thoughtful analysis should be done before you make any attempt to actually
implement an assembler or any other large piece of software.

Chapter 8 contains an introduction to software engineering tools and tech-
niques, and illustrates the use of such techniques in designing and implement-
ing a simple assembler. You may want to read this material now to gain
further insight into how an assembler might be constructed.

2.2 MACHINE-DEPENDENT ASSEMBLER FEATURES

In this section, we consider the design and implementation of an assembler for
the more complex XE version of SIC. In doing so, we examine the effect of the
extended hardware on the structure and functions of the assembler. Many real
machines have certain architectural features that are similar to those we con-
sider here. Thus our discussion applies in large part to these machines as well
as to SIC/XE.

Figure 2.5 shows the example program from Fig. 2.1 as it might be rewrit-
ten to take advantage of the SIC/XE instruction set. In our assembler lan-
guage, indirect addressing is indicated by adding the prefix @ to the operand
(see line 70). Inmediate operands are denoted with the prefix # (lines 25, 55,
133). Instructions that refer to memory are normally assembled using either
the program-counter relative or the base relative mode. The assembler direc-
tive BASE (line 13) is used in conjunction with base relative addressing.
(See Section 2.2.1 for a discussion and examples.) If the displacements required

Assemblers 55

Pass 1:

begin Srinivas s o e B
read first input line ale
if OPCODE = ‘START’ t} Acc. :i&.......‘.]..Q..éJﬂz,.. reeresesnan

Mgin . cﬂl No::nnn-nnu-.ou-oa.oo.nuu-o---uu-bol.
save #[OPERAND] as starting address

initialize LOCCTR to starting address
write line to intermediate file
read next input line
end {if START}
else
initialize LOCCTR to 0
while OPCODE # ‘END’ do

begin
if this is not a comment line then
begin
if there is a symbol in the LABEL field then
begin

search SYMTAB for LABEL
if found then
set error flag (duplicate symbol)
else
insert (LABEL,LOCCTR) into SYMTAB
end {if symbol}
search OPTAB for OPCODE
if found then
add 3 {instruction length} to LOCCTR
else if OPCODE = ‘WORD’ then
add 3 to LOCCTR
else if OPCODE = ‘RESW’ then
add 3 * #[OPERAND] to LOCCTR
else if OPCODE = ‘RESB’ then
add #[OPERAND] to LOCCTR
else if OPCODE = ‘BYTE’ then
begin
find length of constant in byites
add length to LOCCTR
end {if BYTE}
else
set error flag (invalid operationn code)
end {if not a. comment}
write line to intermediate file
read next input line
end {while not END}
write last line to intermediate file
save (LOCCTR - starting address) as program lengtla
end {Pass 1}

Figure 2.4(a) Algorithm for Pass 1 of assembler.

56 System Software

Pass 2:

begin
read first input line {from intermediate file}
if OPCODE = ‘START' then
begin
write listing line
read next input line
end {if START}
write Header record to object program
initialize first Text record
while OPCODE # ‘END’ do
begin
if this is not a comment line then
begin
search OPTAB for OPCODE
if found then

begin
if there is a symbol in OPERAND field then
begin
search SYMTAB for OPERAND
if found then
store symbol value as operand address
else
begin
store 0 as operand address
set error flag (undefined symbol)
end
end {if symbol}
else

store 0 as operand address
assemble the object code instruction
end {if opcode found}
else if OPCODE = ‘BYTE’ or ‘WORD’ then
convert constant to object code
if object code will not fit into the current Text record then
begin
write Text record to object program
initialize new Text record
end
add object code to Text record
end {if not comment}
write listing line
read next input line
end {while not END}
write last Text record to object program
write End record to object. program
write last listing line
end {Pass 2}

Figure 2.4(b) Algorithm for Pass 2 of assembler.

Line

10
12
13
15
20
25
30
35
40
45
50
55
60
65
70
80
95
100
105
110
115
120
125
130
132
133
135
140
145
150
155
160
165
170
175
180
185
195
200
205
210
212
215
220
225
230
235
240
245
250
255

Source statement

COPY START
FIRST STL
‘ LDB
BASE
CLOOP +JSUB
LDA
COMP
JEQ
+JSUB
J
ENDFIL LDA
STA
LDA
STA
+JSUB
J
EOF BYTE
RETADR RESW
LENGTH RESW
BUFFER RESB

0
RETADR
#LENGTH
LENGTH
RDREC
LENGTH
#0
ENDFIL
WRREC
CLOCP
EOF
BUFFER
#3
LENGTH
WRREC
@RETADR
C'EQCF’
1
1
4096

Assemblers

COPY FILE FROM INPUT TO OUTPUT
SAVE RETURN ADDRESS
ESTABLISH BASE REGISTER

READ INPUT RECORD
TEST FOR EOF (LENGTH = 0)

EXIT IF EOF FOUND

WRITE OUTPUT RECORD

LOOP

INSERT END OF FILE MARKER

SET LENGTH = 3
WRITE EOF

RETURN TO CALLER

LENGTH OF RECORD
4096-BYTE BUFFER AREA

SUBROUTINE TO READ RECORD INTO BUFFER

RDREC CLEAR
CLEAR
CLEAR
+LDT
RLOOP TD
JEQ
RD
COMPR
JEQ
STCH
TIXR
JLT
EXIT STX
RSUB
INPUT BYTE

X

A

S
#4096
INPUT
RLOOP
INPUT
A,S
EXIT
BUFFER, X
T
RLOOP
LENGTH

X'F1l'

CLEAR LOOP COUNTER
CLEAR A TO ZERO
CLEAR S TO ZERO

TEST INPUT DEVICE
LOOP UNTIL READY
READ CHARACTER INTO REGISTER A
TEST FOR END OF RECORD (X'"U’)
EXIT LOOP IF EOR
STORE CHARACTER IN BUFFER
LOOP UNLESS MAX LENGTIL
HAS BEEN REACHED
SAVE RECORD LENGTH
RETURN TO CALLER
CODE FOR INPUT DEVICE

SUBROUTINE TO WRITE RECORD FROM BUFFER

WRREC CLEAR
LDT

WLOOP D
JEQ
LDCH
WD
TIXR
JLT
RSUB

OUTPUT BYTE
END

X

LENGTH
OUTPUT
WLOOP
BUFFER, X
OUTPUT

T

WLOOP

X'05"
FIRST

CLEAR LOOP COUNTER

TEST OUTPUT DEVICE

LCOP UNTIL READY

GET CHARACTER FROM BUFFER

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

RETURN TO CALLER

CODE FOR OUTPUT DEVICE

Figure 2.5 Example of a SIC/XE program.

57

58

System Software

for both program-counter relative and base relative addressing are too large to
fit into a 3-byte instruction, then the 4-byte extended format (Format 4) must
be used. The extended instruction format is specified with the prefix + added
to the operation code in the source statement (see lines 15, 35, 65). It is the pro-
grammer’s responsibility to specify this form of addressing when it is
required.

The main differences between this version of the program and the version in
Fig. 2.1 involve the use of register-to-register instructions (in place of register-to-
memory instructions) wherever possible. For example, the statement on line 150
is changed from COMP ZERO to COMPR A,S. Similarly, line 165 is changed
from TIX MAXLEN to TIXR T. In addition, immediate and indirect addressing
have been used as much as possible (for example, lines 25, 55, and 70).

These changes take advantage of the more advanced SIC/XE architecture
to improve the execution speed of the program. Register-to-register instruc-
tions are faster than the corresponding register-to-memory operations because
they are shorter, and, more importantly, because they do not require another
memory reference. (Fetching an operand from a register is much faster than
retrieving it from main memory.) Likewise, when using immediate address-
ing, the operand is already present as part of the instruction and need not be
fetched from anywhere. The use of indirect addressing often avoids the need
for another instruction (as in the “return” operation on line 70). You may
notice that some of the changes require the addition of other instructions to
the program. For example, changing COMP to COMPR on line 150 forces us to
add the CLEAR instruction on line 132. This still results in an improvement in
execution speed. The CLEAR is executed only once for each record read,
whereas the benefits of COMPR (as opposed to COMP) are realized for every
byte of data transferred.

In Section 2.2.1, we examine the assembly of this SIC/XE program, focus-
ing on the differences in the assembler that are required by the new addressing
modes. (You may want to briefly review the instruction formats and target
address calculations described in Section 1.3.2.) These changes are direct con-
sequences of the extended hardware functions.

Section 2.2.2 discusses an indirect consequence of the change to SIC/XE.
The larger main memory of SIC/XE means that we may have room to load
and run several programs at the same time. This kind of sharing of the
machine between programs is called multiprogramming. Such sharing often
results in more productive use of the hardware. (We discuss this concept, and
its implications for operating systems, in Chapter 6.) To take full advantage of
this capability, however, we must be able to load programs into memory wher-
ever there is room, rather than specifying a fixed address at assembly time.
Section 2.2.2 introduces the idea of program relocation and discusses its impli-
cations for the assembler.

Assemblers

2.2.1 Instruction Formats and Addressing Modes

Figure 2.6 shows the object code generated for each statement in the program
of Fig. 2.5. In this section we consider the translation of the source statements,
paying particular attention to the handling of different instruction formats and
different addressing modes. Note that the START statement now specifies a
beginning program address of 0. As we discuss in the next section, this indi-
cates a relocatable program. For the purposes of instruction assembly, how-
ever, the program will be translated exactly as if it were really to be loaded at
machine address 0.

Translation of register-to-register instructions such as CLEAR (line 125)
and COMPR (line 150) presents no new problems. The assembler must simply
convert the mnemonic operation code to machine language (using OPTAB)
and change each register mnemonic to its numeric equivalent. This translation
is done during Pass 2, at the same point at which the other types of instruc-
tions are assembled. The conversion of register mnemonics to numbers can be
done with a separate table; however, it is often convenient to use the symbol
table for this purpose. To do this, SYMTAB would be preloaded with the regis-
ter names (A, X, etc.) and their values (0, 1, etc.).

Most of the register-to-memory instructions are assembled using either
program-counter relative or base relative addressing. The assembler must, in
either case, calculate a displacement to be assembled as part of the object
instruction. This is computed so that the correct target address results when
the displacement is added to the contents of the program counter (PC) or the
base register (B). Of course, the resulting displacement must be small enough
to fit in the 12-bit field in the instruction. This means that the displacement
must be between 0 and 4095 (for base relative mode) or between —-2048 and
+2047 (for program-counter relative mode).

If neither program-counter relative nor base relative addressing can be used
(because the displacements are too large), then the 4-byte extended instruction
format (Format 4) must be used. This 4-byte format contains a 20-bit address
field, which is large enough to contain the full memory address. In this case,
there is no displacement to be calculated. For example, in the instruction

15 0006 CLOOP +JSUB RDREC 4B101036

the operand address is 1036. This full address is stored in the instruction, with
bit e set to 1 to indicate extended instruction format.

Note that the programmer must specify the extended format by using the
prefix + (as on line 15). If extended format is not specified, our assembler first
attempts to translate the instruction using program-counter relative address-
ing. If this is not possible (because the required displacement is out of range),
the assembler then attempts to use base relative addressing. If neither form of

59

System Software

Line Loc Source statement Obiject code
5 0000 COPY START 0

10 0000 FIRST STL RETADR ~ 17202D
12 0003 LDB #LENGTH 69202D
13 BASE LENGTH

15 0006 CLOOP +JSUB RDREC -~ 4B101036
20 000A LDA LENGTH 032026
25 000D COMP #0 290000
30 0010 JEQ ENDFIL 332007
35 0013 +JSUB WRREC 4B10105D
40 0017 J CLOOP -~ 3F2FEC
45 001A. ENDFIL LDA EOF 032010
50 001D STA BUFFER 0F2016
55 0020 LDA #3 010003
60 0023 STA LENGTH 0F200D
65 0026 +JSUB WRREC 4B10105D
70 002A J @RETADR 3E2003
80 002D EOF BYTE C'EOF’ 454F46 "
95 0030 RETADR RESW 1 R

100 0033 LENGTH RESW 1 e . A

105 0036 BUFFER RESB 4096 - L -

110 = AT

115 SUBROUTINE TO READ RECORD INTO BUFFER

120 .

125 1036 RDREC CLEAR X B410

130 1038 CLEAR A B400

132 103a CLEAR S B440

133 103C +LDT #4096 75101000

135 1040 RLOOP D INPUT E32019

140 1043 JEQ RLOOP 332FFA

145 1046 RD INPUT DB2013

150 1049 COMPR A,S A004

155 104B JEQ EXIT 332008

160 104E STCH BUFFER, X 57C003

165 1051 TIXR T B850

170 1053 JLT RLOOP 3B2FEA

175 1056 EXIT STX LENGTH 134000

180 1059 RSUB 4F0000

185 105C INPUT BYTE X'F1’ F1

195

200 SUBROUTINE TO WRITE RECORD FROM BUFFER

205 .

210 105D WRREC CLEAR X B410

212 105F LDT LENGTH 774000

215 1062 WLOOP D OUTPUT E32011

220 1065 JEQ WLOOP 332FFA

225 1068 LDCH BUFFER, X 53C003

230 106B WD OUTPUT DF2008

235 106E TIXR T B850

240 1070 JLT WLOOP 3B2FEF

245 1073 RSUB 4F0000

250 1076 OUTPUT BYTE X'05" 05

255 END FIRST

Figure 2.6 Program from Fig. 2.5 with object code.

Assemblers

relative addressing is applicable and extended format is not specified, then the
instruction cannot be properly assembled. In this case, the assembler must
generate an error message. -

We now examine the details of the displacement calculation for program-
counter relative and base relative addressing modes. The computation that the
assembler needs to perform is essentially the target address calculation in
reverse. You may want to review this from Section 1.3.2.

The instruction

10 0000 FIRST STL RETADR 17202D

is a typical example of program-counter relative assembly. During execution
of instructions on SIC (as in most computers), the program counter is
advanced after each instruction is fetched and before it is executed. Thus during
the execution of the STL instruction, PC will contain the address of the next
instruction (that is, 0003). From the Loc column of the listing, we see that
RETADR (line 95) is assigned the address 0030. (The assembler would, of
course, get this address from SYMTAB.) The displacement we need in the

instruction is 30 — 3 = 2D. At execution time, the target address calculation per- -

formed will be (PC) + disp, resulting in the correct address (0030). Note that
bit p is set to 1 to indicate program-counter relative addressing, making the
last 2 bytes of the instruction 202D. Also note that bits n and i are both set to 1,
indicating neither indirect nor immediate addressing; this makes the first
byte 17 instead of 14. (See Fig. 1.1 in Section 1.3.2 for a review of the location
and setting of the addressing-mode bit flags.)

Another example of program-counter relative assembly is the instruction

40 0017 J CLOOP 3F2FEC

Here the operand address is 0006. During instruction execution, the program
counter will contain the address 0001A. Thus the displacement required is
6 — 1A = —14. This is represented (using 2's complement for negative numbers) in
a 12-bit field as FEC, which is the displacement assembled into the object code.
The displacemént calculation process for base relative addressing is much
the same as for program-counter relative addressing. The main difference is
that the assembler knows what the contents of the program counter will be at
execution time. The base register, on the other hand, is under control of the pro-
grammer. Therefore, the programmer must tell the assembler what the base
register will contain during execution of the program so that the assembler can
compute displacements. This is done in our example with the assembler direc-
tive BASE. The statement BASE LENGTH (line 13) informs the assembler that
the base register will contain the address of LENGTH. The preceding instruction
(LDB #LENGTH) loads this value into the register during program execution.

61

62

System Software

The assembler assumes for addressing purposes that register B contains this
address until it encounters another BASE statement. Later in the program, it
may be desirable to use register B for another purpose (for example, as tempo-
rary storage for a data value). In such a case, the programmer must use another
assembler directive (perhaps NOBASE) to inform the assembler that the con-
tents of the base register can no longer be relied upon for addressing.

It is important to understand that BASE and NOBASE are assembler direc-
tives, and produce no executable code. The programmer must provide instruc-
tions that load the proper value into the base register during execution. If this
is not done properly, the target address calculation will not produce the correct
operand address.

The instruction

160 104E STCH BUFFER, X 57C003

is a typical example of base relative assembly. According to the BASE state-
ment, register B will contain 0033 (the address of LENGTH) during execution.
The address of BUFFER is 0036. Thus the displacement in the instruction must
be 36 - 33 = 3. Notice that bits x and b are set to 1 in the assembled instruction
to indicate indexed and base relative addressing. Another example is the
instruction STX LENGTH on line 175. Here the displacement calculated is 0.

Notice the difference between the assembly of the instructions on lines 20
and 175. On line 20, LDA LENGTH is assembled with program-counter rela-
tive addressing. On line 175, STX LENGTH uses base relative addressing, as
noted previously. (If you calculate the program-counter relative displacement
that would be required for the statement on line 175, you will see that it is too
large to fit into the 12-bit displacement field.) The statement on line 20 could
also have used base relative mode. In our assembler, however, we have arbi-
trarily chosen to attempt program-counter relative assembly first.

The assembly of an instruction that specifies immediate addressing is sim-
pler because no memory reference is involved. All that is necessary is to con-
vert the immediate operand to its internal representation and insert it into the
instruction. The instruction '

55 0020 LDA #3 010003
is a typical example of this, with the operand stored in the instruction as 003,

and hit 7 set to 1 to indicate immediate addressing. Another example can be
found in the instruction :

133 103cC +LDT #4096 75101000

In this case the operand (4096) is too large to fit into the 12-bit displacement
field, so the extended instruction format is called for. (If the operand were too

Assembiers

large even for this 20-bit address field, immediate addressing could not be
used.)
A different way of using immediate addressing is shown in the instruction

12 0003 IDB #LENGTH 69202D

In this statement the immediate operand is the symbol LENGTH. Since the
value of this symbol is the address assigned to it, this immediate instruction has
the effect of loading register B with the address of LENGTH. Note here that
we have combined program-counter relative addressing with immediate
addressing. Although this may appear unusual, the interpretation is consistent
with our previous uses of immediate operands. In general, the target address
calculation is performed; then, if immediate mode is specified, the target
address (not the contents stored at that address) becomes the operand. (In the
LDA statement on line 55, for example, bits x, b, and p are all 0. Thus the target
address is simply the displacement 003.)

The assembly of instructions that specify indirect addressing presents
nothing really new. The displacement is computed in the usual way to pro-
duce the target address desired. Then bit 7 is set to indicate that the contents
stored at this location represent the address of the operand, not the operand
itself. Line 70 shows a statement that combines program-counter relative and
indirect addressing in this way.

2.2.2 Program Relocation

As we mentioned before, it is often desirable to have more than one program
at a time sharing the memory and other resources of the machine. If we knew
in advance exactly which programs were to be executed concurrently in this
way, we could assign addresses when the programs were assembled so that
they would fit together without overlap or wasted space. Most of the time,
however, it is not practical to plan program execution this closely. (We usually
do not know exactly when jobs will be submitted, exactly how long they will
run, etc.) Because of this, it is desirable to be able to load a program into mem-
ory wherever there is room for it. In such a situation the actual starting
address of the program is not known until load time.

The program we considered in Section 2.1 is an example of an absolute
program (or absolute assembly). This program must be loaded at address 1000
(the address that was specified at assembly time) in order to execute properly.
To see this, consider the instruction

55 101B LDA THREE 00102D

63

System Software

from Fig. 2.2. In the object program (Fig. 2.3), this statement is translated as
00102D, specifying that register A is to be loaded from memory address 102D.
Suppose we attempt to load and execute the program at address 2000 instead
of address 1000. If we do this, address 102D Vyill not contain the value that we
expect—in fact, it will probably be part of some other user’s program.

Obviously we need to make some change in the address portion of this
instruction so we can load and execute our program at address 2000. On the
other hand, there are parts of the program (such as the constant 3 generated
from line 85) that should remain the same regardless of where the program is
loaded. Looking at the object code alone, it is in general not possible to tell
which values represent addresses and which represent constant data items.

Since the assembler does not know the actual location where the program
will be loaded, it cannot make the necessary changes in the addresses used
by the program. However, the assembler can identify for the loader those parts
of the object program that need modification. An object program that contains
the information necessary to perform this kind of modification is called a relo-
catable program.

To look at this in more detail, consider the program from Figs. 2.5 and 2.6.
In the preceding section, we assembled this program using a starting address
of 0000. Figure 2.7(a) shows this program loaded beginning at address 0000.
The JSUB instruction from line 15 is loaded at address 0006. The address field
of this instruction contains 01036, which is the address of the instruction
labeled RDREC. (These addresses are, of course, the same as those assigned by
the assembler.)

Now suppose that we want to load this program beginning at address
5000, as shown in Fig. 2.7(b). The address of the instruction labeled RDREC is
then 6036. Thus the JSUB instruction must be modified as shown to contain
this new address. Likewise, if we loaded the program beginning at address
7420 (Fig. 2.7¢), the JSUB instruction would need to be changed to 4B108456 to
correspond to the new address of RDREC.

Note that no matter where the program is loaded, RDREC is always 1036
bytes past the starting address of the program. This means that we can solve
the relocation problem in the following way:

1. When the assembler generates the object code for the JSUB instruc-
tion we are considering, it will insert the address of RDREC relative to
the start of the program. (This is the reason we initialized the location
counter to 0 for the assembly.)

2. The assembler will also produce a command for the loader, instruct-
ing it to add the beginning address of the program to the address
field in the JSUB instruction at load time.

S...
8

1036

1076

Assemblers

65

(+JSUB RDREC)

i¢— RDREC

4B101036 | (+JSUB RDREC)
B410 «—RDREC
5000 :
5006 | 4B106036 |(+JSUB RDREC)
6036 | B410 |e— RDREC
6076 : L
7420 :
7426 | 4B108456
8456 | B410
8496 :
(a) (b) (c)
Figure 2.7 Examples of program relocation.

The command for the loader, of course, must also be a‘part of the object pro-
gram. We can accomplish this with a Modification record having the following

format:

Modification record:

Col. 1
Col. 2-7

Col. 8-9

M

Starting location of the address field to be modified, rel-
ative to the beginning of the program (hexadecimal)

Length of the address field to be modified, in half-
bytes (hexadecimal)

The length is stored in half-bytes (rather than bytes) because the address
field to be modified may not occupy an integral number of bytes. (For example,

System Software

the address field in the JSUB instruction we considered above occupies 20 bits,
which is 5 half-bytes.) The starting location is the location of the byte contain-
ing the leftmost bits of the address field to be modified. If this field occupies an
odd number of half-bytes, it is assumed to begin in the middle of the first byte
at the starting location. These conventions are, of course, closely related to the
architecture of SIC/XE. For other types of machines, the half-byte approach
might not be appropriate (see Exercise 2.2.9).

For the JSUB instruction we are using as an example, the Modification
record would be

M00000705

This record specifies that the beginning address of the program is to be added
to a field that begins at aadress 000007 (relative to the start of the program)
and is 5 half-bytes in length. Thus in the assembled instruction 4B101036, the
first 12 bits (4B1) will remain unchanged. The program load address will be
added to the last 20 bits (01036) to produce the correct operand address. (You
should check for yourself that this gives the results shown in Fig. 2.7.)

Exactly the same kind of relocation must be performed for the instructions
on lines 35 and 65 in Fig. 2.6. The rest of the instructions in the program, how-
ever, need not be modified when the program is loaded. In some cases this is
because the instruction operand is not a memory address at all (e.g.,, CLEAR S
or LDA #3). In other cases no modification is needed because the operand is
specified using program-counter relative or base relative addressing. For
example, the instruction on line 10 (STL RETADR) is assembled using pro-
gram-counter relative addressing with displacement 02D. No matter where
the program is loaded in memory, the word labeled RETADR will always be
2D bytes away from the STL instruction; thus no instruction modification is
needed. When the STL is executed, the program counter will contain the
(actual) address of the next instruction. The target address calculation process
will then produce the correct (actual) operand address corresponding to
RETADR.

Similarly the distance between LENGTH and BUFFER will always be
3 bytes. Thus the displacement in the base relative instruction on line 160 will
be correct without modification. (The contents of the base register will, of
course, depend upon where the program is loaded. However, this will be
taken care of automatically when the program-counter relative instruction
LDB #LENGTH is executed.)

By now it should be clear that the only parts of the program that require
modification at load time are those that specify direct (as opposed to relative)
addresses. For this SIC/XE program, the only such direct addresses are found
in extended format (4-byte) instructions. This is an advantage of relative

Assemblers

%FOPY £0000q901077
3900009&237202%@92029$310103§P3202§39000993200165101059@F2F59932010
g@OOOIQ$%PF201QPIOOO%QFZOOQéBIO1052§E200%$54F46
390103@32@&lg@éOQ@hkg]S10lOOg@320l%@32FF5PBZO1;@00@@3200%@7000%@850
SQOIOS%GQQBZFEAQ3400@6F0009@%@4lq376009§32015@32FF5§3C00%PF200%@850
290107QPZPBZF556F000995

%90000195

%QOOOI@QS

490002%95

E000000

Figure 2.8 Object program corresponding to Fig. 2.6.

addressing—if we were to attempt to relocate the program from Fig. 2.1, we
would find that almost every instruction required modification.

Figure 2.8 shows the complete object program corresponding to the source
program of Fig. 2.5. Note that the Text records are exactly the same as those that
would be produced by an absolute assembler (with program starting address of
0). However, the load addresses in the Text records are interpreted as relative,
rather than absolute, locations. (The same is, of course, true of the addresses in
the Modification and End records.) There is one Modification record for each
address field that needs to be changed when the program is relocated (in this
case, the three +JSUB instructions). You should verify these Modification records
yourself and make sure you understand the contents of each. In Chapter 3 we
consider in detail how the loader performs the required program modification.
It is important that you understand the concepts involved now, however, because
we build on these concepts in the next section.

2.3 MACHINE-INDEPENDENT ASSEMBLER FEATURES

In this section, we discuss some common assembler features that are not
closely related to machine architecture. Of course, more advanced machines
tend to have more complex software; therefore the features we consider are
more likely to be found on larger and more complex machines. However, the
presence or absence of such capabilities is much more closely related to issues
such as programmer convenience and software environment than it is to
machine architecture.

In Section 2.3.1 we discuss the implementation of literals within an assem-
bler, including the required data structures and processing logic. Section 2.3.2

67

68

System Software

discusses two assembler directives (EQU and ORG) whose main function is
the definition of symbols. Section 2.3.3 briefly examines the use of expressions
in assembler language statements, and discusses the different types of expres-
sions and their evaluation and use.

In Sections 2.3.4 and 2.3.5 we introduce the important topics of program
blocks and control sections. We discuss the reasons for providing such capabil-
ities and illustrate some different uses with examples. We also introduce a
set of assembler directives for supporting these features and discuss their
implementation.

2.3.1 Literals

It is often convenient for the programmer to be able to write the value of a
constant operand as a part of the instruction that uses it. This avoids having to
define the constant elsewhere in the program and make up a label for it. Such
an operand is called a literal because the value is stated “literally” in the
instruction. The use of literals is illustrated by the program in Fig. 2.9. The
object code generated for the statements of this program is shown in Fig. 2.10.
(This program is a modification of the one in Fig. 2.5; other changes are
discussed later in Section 2.3.)

In our assembler language notation, a literal is identified with the prefix =,
which is followed by a specification of the literal value, using the same notation
as in the BYTE statement. Thus the literal in the statement

45 001A ENDFIL LDA =C’EQF’ 032010

specifies a 3-byte operand whose value is the character string EOF. Likewise
the statement

215 1062 WLOOP ™D =X'05’ E32011

specifies a 1-byte literal with the hexadecimal value 05. The notation used for
literals varies from assembler to assembler; however, most assemblers use
some symbol (as we have used =) to make literal identification easier.

It is important to understand the difference between a literal and an imme-
diate operand. With immediate addressing, the operand value is assembled as
part of the machine instruction. With a literal, the assembler generates the spec-
ified value as a constant at some other memory location. The address of this gen-
erated constant is used as the target address for the machine instruction. The
effect of using a literal is exactly the same as if the programmer had defined the
constant explicitly and used the label assigned to the constant as the instruction
operand. (In fact, the generated object code for lines 45 and 215 in Fig. 2.10 is

115
© 120
125
130
132
133
135
140
145
150
155
160
165
170
175
180
185
195
200
205
210
212
215
220
225
230
235
240
245
255

Source statement

COPY
FIRST

CLOOP

ENDFIL

RETADR
LENGTH
BUFFER
BUFEND
MAXLEN

RDREC

RLOOP

EXIT

INPUT

WRREC

WLOOP

Figure 2.9

START
STL
LDB
BASE
+JSUB
LDA
COMP
JEQ
+JSUB
J
LDA
STA
LDA
STA
+JSUB
J
LTORG
RESW
RESW
RESRB
EQU
EQU

0
RETADR
#LENGTH
LENGTH
RDREC
LENGTH
#0
ENDFIL
WRREC
CLOOP
=C’"EQF’
BUFFER
#3
LENGTH
WRREC
@RETADR

1
1
4096

*

Assemblers

COPY FILE FROM INPUT TO OUTPUT
SAVE RETURN ADDRESS
ESTABLISH BASE REGISTER

READ INPUT RECORD
TEST FOR EOF (LENGTH = 0)

EXIT IF EOF FOUND

WRITE OUTPUT RECORD

LOOP

INSERT END OF FILE MARKER

SET LENGTH = 3
WRITE EOF

RETURN TO CALLER

LENGTH OF RECORD
4096~BYTE BUFFER AREA

BUFEND-BUFFER MAXIMUM RECORD LENGTH

SUBROUTINE TO READ RECORD INTO BUFFER

CLEAR
CLEAR
CLEAR
+LDT
TD
JEQ
RD
COMPR
JEQ
STCH
TIXR
JLT
STX
RSUB
BYTE

SUBROUTINE TO WRITE

CLEAR
LDT
TD
JEQ
LDCH
WD
TIXR
JLT
RSUB
END

X

A

S
#MAXLEN
INPUT
RLOOP
INPUT
A,S
EXIT
BUFFER, X
T
RLOOP
LENGTH

X'F1’

X

LENGTH
=X’'05"
WLOOP
BUFFER, X
=X’'05"

T

WLOOP

FIRST

CLEAR LOOP COUNTER
CLEAR A TO ZERO
CLEAR S TO ZERO

TEST INPUT DEVICE
LOOP UNTIL READY
READ CHARACTER INTO REGISTER A
TEST FOR END OF RECORD (X'00")
EXIT LOOP IF EOR
STORE CHARACTER IN BUFFER
LOOP UNLESS MAX LENGTH
HAS BEEN REACHED
SAVE RECORD LENGTH
RETURN TO CALLER
CODE FOR INPUT DEVICE

RECORD FROM BUFFER
CLEAR LOOP COUNTER

TEST OUTPUT DEVICE

LOOP UNTIL READY

GET CHARACTER FROM BUFFER

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

RETURN TO CALLER

Program demonstrating additional assembler features.

69

System Software

Line Loc Source statement Object code
5 0000 COPY START 0
10 0000 FIRST STL RETADR 17202D
13 0003 LDB #LENGTH 69202D
14 BASE LENGTH
15 0006 CLOOP +JSUB RDREC 4B101036
20 000A LDA LENGTH 032026
25 000D COMP . #0 290000
30 0010 JEQ ENDFIL 332007
35 0013 +JSUB WRREC 4B10105D
40 0017 J CLOOP 3F2FEC
45 001A ENDFIL LDA =C’EOF’ 032010
50 001D STA BUFFER 0F2016
55 0020 LDA #3 010003
60 0023 STA LENGTH 0F200D
65 0026 +JSUB WRREC 4B10105D
70 002A J @RETADR 3E2003
93 LTORG
002D * =C’EOF’ 454F46
95 0030 RETADR RESW 1
100 0033 LENGTH RESW 1
105 0036 BUFFER RESB 4096
106 1036 BUFEND EQU *
107 1000 MAXLEN EQU BUFEND-BUFFER
110 .
115 . SUBROUTINE TO READ RECORD INTO BUFFER
120 .
125 1036 RDREC CLEAR X B410
130 1038 CLEAR A B400
132 103A CLEAR S B440
133 103C +LDT #MAXLEN 75101000
135 1040 RLOOP TD INPUT E32019
140 1043 JEQ RLOOP 332FFA
145 1046 RD INPUT DB2013
150 1049 COMPR A,S 2004
155 104B JEQ EXIT 332008
160 104E STCH BUFFER, X 57C003
165 1051 TIXR T B850
170 1053 JLT RLOOP 3B2FEA
175 1056 EXIT STX LENGTH 134000
180 1059 RSUB 4F0000
185 105C INPUT BYTE X'F1’ F1
195 .
200 . SUBROUTINE TO WRITE RECORD FROM BUFFER
205 .
210 105D WRREC CLEAR X B410
212 105F LDT LENGTH 774000
215 1062 WLOOP TD =X'05" E32011
220 1065 JEQ WLOOP 332FFA
225 1068 LDCH BUFFER, X 53C003
230 106B WD =X'05" DF2008
235 106E TIXR T B850
240 1070 JLT WLOOP 3B2FEF
245 1073 RSUB 4F0000
255 END FIRST
1076 * =X'05" 05

Figure 2.10 Program from Fig. 2.9 with object code.

Assemblers

identical to the object code for the corresponding lines in Fig. 2.6.) You should
compare the object instructions generated for lines 45 and 55 in Fig. 2.10 to
make sure you understand how literals and immediate operands are handled.

All of the literal operands used in a program are gathered together into
one or more literal pools. Normally literals are placed into a pool at the end of
the program. The assembly listing of a program containing literals usually
includes a listing of this literal pool, which shows the assigned addresses and
the generated data values. Such a literal pool listing is shown in Fig. 2.10
immediately following the END statement. In this case, the pool consists of the
single literal =X"05".

In some cases, however, it is desirable to place literals into a pool at some
other location in the object program. To allow this, we introduce the assembler
directive LTORG (line 93 in Fig. 2.9). When the assembler encounters a LTORG
statement, it creates a literal pool that contains all of the literal operands used
since the previous LTORG (or the beginning of the program). This literal pool
is placed in the object program at the location where the LTORG directive was
encountered (see Fig. 2.10). Of course, literals placed in a pool by LTORG will
not be repeated in the pool at the end of the program.

If we had not used the LTORG statement on line 93, the literal =C’EOF’
would be placed in the pool at the end of the program. This literal pool would
begin at address 1073. This means that the literal operand would be placed too
far away from the instruction referencing it to allow program-counter relative
addressing. The problem, of course, is the large amount of storage reserved for
BUFFER. By placing the literal pool before this buffer, we avoid having to use
extended format instructions when referring to the literals. The need for an
assembler directive such as LTORG usually arises when it is desirable to keep
the literal operand close to the instruction that uses it.

Most assemblers recognize duplicate literals—that is, the same literal used
in more than one place in the program—and store only one copy of the speci-
fied data value. For example, the literal =X’05" is used in our program on lines
215 and 230. However, only one data area with this value is generated. Both
instructions refer to the same address in the literal pool for their operand.

The easiest way to recognize duplicate literals is by comparison of the
character strings defining them (in this case, the string =X’05). Sometimes a
slight additional saving is possible if we look at the generated data value
instead of the defining expression. For example, the literals =C’EOF’ and
=X'454F46’ would specify identical operand values. The assembler might
avoid storing both literals if it recognized this equivalence. However, the bene-
fits realized in this way are usually not great enough to justify the additional
complexity in the assembler.

If we use the character string defining a literal to recognize duplicates,
we must be careful of literals whose value depends upon their location in

71

72

System Software

the program. Suppose, for example, that we allow literals that refer to the cur-
rent value of the location counter (often denoted by the symbol *). Such literals
are sometimes useful for loading base registers. For example, the statements

BASE *
LDB =*

as the first lines of a program would load the beginning address of the pro-
gram into register B. This value would then be available for base relative
addressing.

Such a notation can, however, cause a problem with the detection of dupli-
cate literals. If a literal =* appeared on line 13 of our example program, it would
specify an operand with value 0003. If the same literal appeared on line 55, it
would specify an operand with value 0020. In such a case, the literal operands
have identical names; however, they have different values, and both must
appear in the literal pool. The same problem arises if a literal refers to any other
item whose value changes between one point in the program and another.

Now we are ready to describe how the assembler handles literal operands.
The basic data structure needed is a literal table LITTAB. For each literal used,
this table contains the literal name, the operand value and length, and the
address assigned to the operand when it is placed in a literal pool. LITTAB is
often organized as a hash table, using the literal name or value as the key.

As each literal operand is recognized during Pass 1, the assembler searches
LITTAB for the specified literal name (or value). If the literal is already present
in the table, no action is needed; if it is not present, the literal is added to LIT-
TAB (leaving the address unassigned). When Pass 1 encounters a LTORG
statement or the end of the program, the assembler makes a scan of the literal
table. At this time each literal currently in the table is assigned an address
(unless such an address has already been filled in). As these addresses are
assigned, the location counter is updated to reflect the number of bytes occu-
pied by each literal.

During Pass 2, the operand address for use in generating object code is
obtained by searching LITTAB for each literal operand encountered. The data
values specified by the literals in each literal pool are inserted at the appropri-
ate places in the object program exactly as if these values had been generated
by BYTE or WORD statements. If a literal value represents an address in the
program (for example, a location counter value), the assembler must also gen-
erate the appropriate Modification record. -

To be sure you understand how LITTAB is created and used by the assem-
bler, you may want to apply the procedure we just described to the source
statements in Fig. 2.9. The object code and literal pools generated should be
the same as those in Fig. 2.10.

Assemblers

2.3.2 Symbol-Defining Statements

Up to this point the only user-defined symbols we have seen in assembler lan-
guage programs have appeared as labels on instructions or data areas. The
value of such a label is the address assigned to the statement on which it
appears. Most assemblers provide an assembler directive that allows the pro-
grammer to define symbols and specify their values. The assembler directive
generally used is EQU (for “equate”). The general form of such a statement is

symbol EQU value

This statement defines the given symbol (i.e., enters it into SYMTAB) and
assigns to it the value specified. The value may be given as a constant or as
any expression involving constants and previously defined symbols. We dis-
cuss the formation and use of expressions in the next section.

One common use of EQU is to establish symbolic names that can be used
for improved readability in place of numeric values. For example, on line 133
of the program in Fig. 2.5 we used the statement

+LDT #4096

to load the value 4096 into register T. This value represents the maximum-
length record we could read with subroutine RDREC. The meaning is not,
however, as clear as it might be. If we include the statement

MAXLEN EQU 4096
in the program, we can write line 133 as
+LDT #MAXLEN

When the assembler encounters the EQU statement, it enters MAXLEN into
SYMTAB (with value 4096). During assembly of the LDT instruction, the
assembler searches SYMTAB for the symbol MAXLEN, using its value as the
operand in the instruction. The resulting object code is exactly the same as in
the original version of the instruction; however, the source statement is easier
to understand. It is also much easier to find and change the value of MAXLEN
if this becomes necessary—we would not have to search through the source
code looking for places where #4096 is used.

Another common use of EQU is in defining mnemonic names for registers.
We have assumed that our assembler recognizes standard mnemonics for reg-
isters—A, X, L, etc. Suppose, however, that the assembler expected register
numbers instead of names in an instruction like RMO. This would require

73

74

System Software

the programmer to write (for example) RMO 0,1 instead of RMO A X. In such
a case the programmer could include a sequence of EQU statements like

A EQU 0
X EQU 1
L EQU 2

These statements cause the symbols A, X, L,... to be entered into SYMTAB with
their corresponding values 0, 1, 2,... . An instruction like RMO A, X would then
be allowed. The assembler would search SYMTAB, finding the values 0 and 1
for the symbols A and X, and assemble the instruction.

On a machine like SIC, there would be little point in doing this—it is just
as easy to have the standard register mnemonics built into the assembler.
Furthermore, the standard names (base, index, etc.) reflect the usage of the
registers. Consider, however, a machine that has general-purpose registers.
These registers are typically designated by 0, 1, 2,... (or RO, R1, R2,...). In a par-
ticular program, however, some of these may be used as base registers, some
as index registers, some as accumulators, etc. Furthermore, this usage of regis-
ters changes from one program to the next. By writing statements like

BASE EQU
COUNT EQU
INDEX EQU

c8R

the programmer can establish and use names that reflect the logical function
of the registers in the program.

There is another common assembler directive that can be used to indirectly
assign values to symbols. This directive is usually called ORG (for “origin”).
Its form is

ORG value

where value is a constant or an expression involving constants and previ-
ously defined symbols. When this statement is encountered during assembly
of a program, the assembler resets its location counter (LOCCTR) to the
specified value. Since the values of symbols used as labels are taken from
LOCCTR, the ORG statement will affect the values of all labels defined until
the next ORG.

Of course the location counter is used to control assignment of storage in
the object program; in most cases, altering its value would result in an incorrect

Assemblers

assembly. Sometimes, however, ORG can be useful in label definition. Suppose
that we were defining a symbol table with the following structure:

SYMBOL VALUE FLAGS

STAB
(100 entries)

In this table, the SYMBOL field contains a 6-byte user-defined symbol;
VALUE is a one-word representation of the value assigned to the symbol;
FLAGS is a 2-byte field that specifies symbol type and other information.

We could reserve space for this table with the statement

STAB RESB 1100

We might want to refer to entries in the table using indexed addressing (plac-
ing in the index register the offset of the desired entry from the beginning of
the table). Of course, we want to be able to refer to the fields SYMBOL,
VALUE, and FLAGS individually, so we must also define these labels. One
way of doing this would be with EQU statements:

SYMBOL EQU STAB
VALUE EQU STAB+6
FLAGS EQU STAB+9

This would allow us to write, for example,

LDA VALUE, X

to fetch the VALUE field from the table entry indicated by the contents of reg-
ister X. However, this method of definition simply defines the labels; it does
not make the structure of the table as clear as it might be.

We can accomplish the same symbol definition using ORG in the following
way:

STAB RESB 1100
ORG STAB
SYMBOL RESB 6
VALUE RESW 1
FLAGS RESB 2

ORG STAB+1100

75

76

System Software

The first ORG resets the location counter to the value of STAB (i.e., the begin-
ning address of the table). The label on the following RESB statement defines
SYMBOL to have the current value in LOCCTR; this is the same address
assigned to SYMTAB. LOCCTR is then advanced so the label on the RESW
statement assigns to VALUE the address (STAB+6), and so on. The result is a
set of labels with the same values as those defined with the EQU statements
above. This method of definition makes it clear, however, that each entry in
STAB consists of a 6-byte SYMBOL, followed by a one-word VALUE, followed
by a 2-byte FLAGS. v

The last ORG statement is v?ry important. It sets LOCCTR back to its
previous value—the address of the next unassigned byte of memory after
the table STAB. This is necessary so that any labels on subsequent statements,
which do not represent part of STAB, are assigned the proper addresses.
In some assemblers the previous value of LOCCTR is automatically remembered,
so we can simply write

ORG

(with no value specified) to return to the normal use of LOCCTR.

The descriptions of the EQU and ORG statements contain restrictions that
are common to all symbol-defining assembler directives. In the case of EQU,
all symbols used on the right-hand side of the statement—that is, all terms
used to specify the value of the new symbol—must have been defined previ-
ously in the program. Thus, the sequence

ALPHA RESW 1
BETA EQU ALPHA

would be allowed, whereas the sequence

BETA EQU ALPHA
ALPHA RESW 1

would not. The reason for this is the symbol definition process. In the second
example above, BETA cannot be assigned a value when it is encountered dur-
ing Pass 1 of the assembly (because ALPHA does not yet have a value).
However, our two-pass assembler design requires that all symbols be defined
during Pass 1.

A similar restriction applies to ORG: all symbols used to specify the new
location counter value must have been previously defined. Thus, for example,
the sequence

Assemblers

ORG ALPHA
BYTE1l RESB 1
BYTE2 RESB 1
BYTE3 RESB 1

ORG
ALPHA RESB 1

could not be processed. In this case, the assembler would not know (during
Pass 1) what value to assign to the location counter in response to the first
ORG statement. As a result, the symbols BYTE1, BYTE2, and BYTE3 could not
be assigned addresses during Pass 1.

It may appear that this restriction is a result of the particular way in which
we defined the two passes of our assembler. In fact, it is a more general prod-
uct of the forward-reference problem. You can easily see, for example, that the
sequence of statements

ALPHA EQU BETA

BETA EQU DELTA
DELTA RESW 1

cannot be resolved by an ordinary two-pass assembler regardless of how the
work is divided between the passes. In Section 2.4.2, we briefly consider ways
of handling such sequences in a more complex assembler structure.

2.3.3 Expressions

Our previous examples of assembler language statements have used single
terms (labels, literals, etc.) as instruction operands. Most assemblers allow the
use of expressions wherever such a single operand is permitted. Each such
expression must, of course, be evaluated by the assembler to produce a single
operand address or value.

Assemblers generally allow arithmetic expressions formed according to
the normal rules using the operators +, —, *, and /. Division is usually defined
to produce an integer result. Individual terms in the expression may be con-
stants, user-defined symbols, or special terms. The most common such special
term is the current value of the location counter (often designated by *). This
term represents the value of the next unassigned memory location. Thus in
Fig. 2.9 the statement

106 BUFEND EQU *

gives BUFEND a value that is the address of the next byte after the buffer area.

System Software

In Section 2.2 we discussed the problem of program relocation. We saw
that some values in the object program are relative to the beginning of the pro-
gram, while others are absolute (independent of program location). Similarly,
the values of terms and expressions are either relative or absolute. A constant
is, of course, an absolute term. Labels on instructions and data areas, and ref-
erences to the location counter value, are relative terms. A symbol whose value
is given by EQU (or some similar assembler directive) may be either an
absolute term or a relative term depending upon the expression used to define
its value.

Expressions are classified as either absolute expressions or relative expressions
depending upon the type of value they produce. An expression that contains
only absolute terms is, of course, an absolute expression. However, absolute
expressions may also contain relative terms provided the relative terms occur
in pairs and the terms in each such pair have opposite signs. It is not necessary
that the paired terms be adjacent to each other in the expression; however, all
relative terms must be capable of being paired in this way. None of the relative
terms may enter into a multiplication or division operation.

A relative expression is one in which all of the relative terms except one can
be paired as described above; the remaining unpaired relative term must have
a positive sign. As before, no relative term may enter into a multiplication or
division operation. Expressions that do not meet the conditions given for either
absolute or relative expressions should be flagged by the assembler as errors.

Although the rules given above may seem arbitrary, they are actually quite
reasonable. The expressions that are legal under these definitions include
exactly those expressions whose value remains meaningful when the program
is relocated. A relative term or expression represents some value that may be
written as (S+ r), where S is the starting address of the program and 7 is the value
of the term or expression relative to the starting address. Thus a relative term
usually represents some location within the program. When relative terms are
paired with opposite signs, the dependency on the program starting address
is canceled out; the result is an absolute value. Consider, for example, the
program of Fig. 2.9. In the statement

107 MAXLEN EQU BUFEND-BUFFER

both BUFEND and BUFFER are relative terms, each representing an address
within the program. However, the expression represents an absolute value: the
difference between the two addresses, which is the length of the buffer area in
bytes. Notice that the assembler listing in Fig. 2.10 shows the value calculated
for this expression (hexadecimal 1000) in the Loc column. This value does not
represent an address, as do most of the other entries in that column. However,
it does show the value that is associated with the symbol that appears in the
source statement (MAXLEN).

Assemblers

Symbol Type Value
RETADR R 0030
BUFFER R 0036
BUFEND R 1036
MAXLEN A 1000

In Section 2.3.5 we consider programs that consist of several parts that can
relocated independently of each other, Ag we discuss in the later section,
our rules for determining the type of an expression must be modified in such

79

System Software

identity and are handled separately by the loader. We use the term progran
blocks to refer to segments of code that are rearranged within a single object
program unit, and control sections to refer to segments that are translated into
independent object program units. (This terminology is, unfortunately, far
from uniform. As a matter of fact, in some systems the same assembier lan-
guage feature is used to accomplish both of these logically different functions.)
In this section we consider the use of program blocks and how they are han-
dled by the assembler. Section 2.3.5 discusses control sections and their uses.

Figure 2.11 shows our example program as it might be written using pro-
gram blocks. In this case three blocks are used. The first (unnamed) program
block contains the executable instructions of the program. The second (named
CDATA) contains all data areas that are a few words or less in length. The
third (named CBLKS) contains all data areas that consist of larger blocks of
memory. Some possible reasons for making such a division are discussed later
in this section.

The assembler directive USE indicates which portions of the source pro-
gram belong to the various blocks. At the beginning of the program, state-
ments are assumed to be part of the unnamed (default) block; if no USE
statements are included, the entire program belongs to this single block. The
USE statement on line 92 signals the beginning of the block named CDATA.
Source statements are associated with this block until the USE statement on
line 103, which begins the block named CBLKS. The USE statement may also
indicate a continuation of a previously begun block. Thus the statement on
line 123 resumes the default block, and the statement on line 183 resumes the
block named CDATA.

As we can see, each program block may actually contain several separate
segments of the source program. The assembler will (logically) rearrange these
segments to gather together the pieces of each block. These blocks will then
be assigned addresses in the object program, with the blocks appearing in the
same order in which they were first begun in the source program. The result is
the same as if the programmer had physically rearranged the source state-
ments to group together all the source lines belonging to each block.

The assembler accomplishes this logical rearrangement of code by main-
taining, during Pass 1, a separate location counter for each program block. The
location counter for a block is initialized to 0 when the block is first begun. The
current value of this location counter is saved when switching to another
block, and the saved value is restored when resuming a previous block. Thus
during Pass 1 each label in the program is assigned an address that is relative
to the start of the block that contains it. When labels are entered into the sym-
bol table, the block name or number is stored along with the assigned relative
address. At the end of Pass 1 the latest value of the location counter for each
block indicates the length of that block. The assembler can then assign to each

Copy
FIRST
CLoop

ENDF17,

RETADR
LENGTH

BUFFER
BUFEND
MAXLEN

EXTT

INPUT

WRREC

WLOOP

START
STL
JSUB
LDA
CoMp
JEQ
JSUB
J
LDA
STA

Source Statement

0

RETADR

RDREC

LENGTH
#0

ENDF17,
WRREC
CLoop
=C'EQF "
BUFFER
#3

Assemblers

Copy FILE FROM INPUT 70 OUTPyYT
SAVE RETURN ADDRESS

READ INPUT RECORD

TEST FOR EoF (LENGTH - 0)

EXIT 1F EOF FOUND
WRITE OUTPUT RECORD
Loop

INSERT END oF FILE MARKER
SET LENGTH = 3

WRITE EOF
RETURN TO CALLER

LENGTH OF RECORD

4096—BYTE BUFFER AREA
FIRST LOCATION AFTER BUFFER
MAXTMUM RECORD LENGTH

CLEAR Loop COUNTER
CLEAR 2 TO ZERoO
CLEAR g TO ZERQ

TEST INPUT DEVICE

Loop UNTIL, READY

READ CHARACTER INTO REGISTER A

TEST FOR END oF RECORD (X100
EOR

SAVE RECORD LENGTH
RETURN TO CALLER

CODE Fogr INPUT DEVICE

CLEAR Loop COUNTER

TEST OUTPyUT DEVICE

Loop UNTIT, READY

GET CHARACTER FROM BUFFER

WRITE CHARACTER

Loop UNTIL, ALL CHARACTERS
TEN

81

